Pancreatic cancer classification using logistic regression and random forest
نویسندگان
چکیده
<span id="docs-internal-guid-2f1ba81b-7fff-8c46-5600-cbb159235091"><span>In the medical field, technology machinery is needed to solve several classification problems. Therefore, this research useful problem of field by using machine learning. This study discusses pancreatic cancer regression logistics and random forest. By comparing accuracy, precision, recall (sensitivity), F1-score both methods, then we will know which method better in classifying dataset that get from Al-Islam Hospital, Bandung, Indonesia. The results showed forest has accuracy than logistic regressions. It can be seen with maximum regressions 96.48 30% data training 99.38% 20% training.</span></span>
منابع مشابه
Comparison of Random Forest and Logistic Regression Methods in Predicting Mortality in Colorectal Cancer Patients and its Related Factors
Background and Objectives: The purpose of this study was to predict the mortality rate of colorectal cancer in Iranian patients and determine the effective factors on the mortality of patients with colorectal cancer using random forest and logistic regression methods. Methods: Data from 304 patients with colorectal cancer registry from the Gastroenterology and Liver Research Center of Shah...
متن کاملClassification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملRandom forest versus logistic regression: a large-scale benchmark experiment
The Random Forest (RF) algorithm for regression and classification has considerably gained popularity since its introduction in 2001. Meanwhile, it has grown to a standard classification approach competing with logistic regression in many innovation-friendly scientific fields. In this context, we present a large scale benchmarking experiment based on 260 real datasets comparing the prediction p...
متن کاملIdentification of Factors Affecting Metastatic Gastric Cancer Patients’ Survival Using the Random Survival Forest and Comparison with Cox Regression Model
Background and Objectives: In survival analysis, using the Cox model to determine the effective factors requires the assumptions whose failure of leads to biased results. The aim of this paper was to determine the factors affecting the survival of metastatic gastric cancer patients using the non-parametric method of Randomized Survival Forest (RSF) model and to compare its result with the Cox m...
متن کاملMulti-period monitoring and prediction of forest cover loss using logistic regression model in Arasbaran catchments
Knowledge and understanding of changes in forest cover in relation to environmental factors (topography) can be valuable in terms of conservational and protective guidances. The purpose of this study was to identify, quantify and predict deforestation in relation to topographic variables using logistic regression model. The Arasbaran catchments (Naposhtehchay, Ilginehchay and Mardanqumchay) in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IAES International Journal of Artificial Intelligence
سال: 2021
ISSN: ['2089-4872', '2252-8938']
DOI: https://doi.org/10.11591/ijai.v10.i2.pp476-481